
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Briar Project App & Protocol 03.2017
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. A. Aranguren, Dipl.-Ing. A. Inführ,
BSc. F. Fäßler, MSc. C. Kean, N. Kobeissi

Index
Introduction
Scope
Cryptography Review
Identified Vulnerabilities

BRP-01-001 Mobile: Lack of screenshot protections (Medium)
BRP-01-004 Mobile: Panic app prompt bypass via Tapjacking (Medium)
BRP-01-005 Mobile: Arbitrary sign out via PanicResponderActivity (Low)
BRP-01-006 Mobile: DNS leak via RSS Import (High)
BRP-01-008 Mobile: User disruption via exposed activities (Medium)
BRP-01-009 Mobile: Possible Intent hijacking via PendingIntent (Medium)

Miscellaneous Issues
BRP-01-002 Mobile: Possible logcat leakage via SDK version (Info)
BRP-01-003 Mobile: Possible Information Leakage via Debuggable Flag (Info)
BRP-01-007 Mobile: App Crash via unsupported Intent (Info)
BRP-01-010 Crypto: DoS in StreamEncrypterImpl.java via paddingLength (Info)
BRP-01-011 Crypto: Password strength indicator seems useless (Info)
BRP-01-012 Crypto: Unnecessary combination of two CSPRNGs (Info)

Conclusions

Cure53, Berlin · 03/20/17 1/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Introduction
“Briar is a messaging app designed for activists, journalists, and anyone else who needs
a safe, easy and robust way to communicate. Unlike traditional messaging tools such as
email, Twitter or Telegram, Briar doesn't rely on a central server - messages are
synchronized directly between the users' devices. If the Internet's down, Briar can sync
via Bluetooth or Wi-Fi, keeping the information flowing in a crisis. If the Internet's up,
Briar can sync via the Tor network, protecting users and their relationships from
surveillance.”

From https://briarproject.org/how-it-works.html

This report documents the findings of a penetration test and source code audit carried
out by Cure53 against the Briar secure messenger application. The project was
completed in March 2017 and revealed the existence of twelve security-relevant issues.
Six Cure53 testers were involved in this assignment, the completion of which took a total
of thirteen days.

The core application in scope was the Briar messenger application for Android, which
was complemented with the review of the protocols specified and used by the Briar
product, notably BQP1, BSP2 and BTP. Methodology-wise, the assessment followed a
white-box approach, meaning that the testing team had access to the Android
application’s full sources and could take advantage of the provided debug builds. The
Briar team has further supplied the Cure53 testers with several APKs, specifically
tweaked to enable more efficiency within the testing process, especially for the scenarios
linked to the use of the Tor network. All components positioned in the scope of this test
have undergone thorough reviews and audit of the code, while respective
implementations were additionally examined when applicable.

The aforementioned total number of twelve different findings comprises six actual
security vulnerabilities and six additional general weaknesses. The great majority of
discoveries received a low-to-medium severity ranking, and some were documented for
the sake of completeness and informational value rather than as actual and current
risks.

Scope
• Briar Project Android App APK was shared

• Briar Project Android App Sources were shared

1 https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BQP.md
2 https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BSP.md

Cure53, Berlin · 03/20/17 2/15

https://cure53.de/
https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BSP.md
https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BQP.md
https://briarproject.org/how-it-works.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Cryptography Review
Three days were dedicated to a cryptography review of the Briar Android App. This
included a specification review for the BQP3, BSP4 and BTP5 protocols provided by the
Briar team. While BQP was quickly deemed to be specified in a sound manner, the BSP
and BTP specifications lacked details and required further communication with the Briar
team. Ultimately, all three specifications could be considered appropriate.

While a full review of the Briar cryptographic code was conducted, the actual series of
tasks began with the code located in the specific directory, notably bramble-
core/src/main/java/org/briarproject/bramble/crypto/. All function calls were then traced
from this location.

The code was found to be exceptionally clear and sound, with no vulnerabilities spotted
within the scope of this two-day review. However, minor discoveries pertaining to the
code have been noted and can be found as three miscellaneous issues documented in
this report under BRP-01-010, BRP-01-011 and BRP-01-012.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. BRP-01-001) for the purpose of facilitating any
future follow-up correspondence.

BRP-01-001 Mobile: Lack of screenshot protections (Medium)
It was found that the Briar Android application currently fails to leverage the available
Android protections to avoid side-channel data leakage via screenshots. This allows
applications with either screen recording or root privileges to directly capture all
information that is being displayed by the Briar app. The issue can be verified as one
runs the following ADB Commands6 while the application is open.

ADB Commands:
adb shell screencap -p /mnt/sdcard/screenshot1.png
adb pull /mnt/sdcard/screenshot1.png

3 https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BQP.md
4 https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BSP.md
5 https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BTP.md
6 https://developer.android.com/studio/command-line/adb.html

Cure53, Berlin · 03/20/17 3/15

https://cure53.de/
https://developer.android.com/studio/command-line/adb.html
https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BTP.md
https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BSP.md
https://code.briarproject.org/akwizgran/briar-spec/blob/master/protocols/BQP.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The resulting screenshot displays the information on the screen, as depicted below:

Fig.: Information leak via the screenshot API

It is recommended to ensure that all WebViews have the Android FLAG_SECURE flag7

set. This will guarantee that even the applications running with root privileges are unable
to directly capture information displayed by the Briar application on screen.

BRP-01-004 Mobile: Panic app prompt bypass via Tapjacking (Medium)
It was found that the Briar Android app fails to mitigate tapjacking attacks. This allows
malicious apps to render an overlay, launch an instance of the Briar application in the
background, and, ultimately, fool a user into performing actions on the Briar app while
they can actually see something different altogether. Although all screens are affected, it
was confirmed that the malicious app can also set itself as the Panic app. This means
that it can set and trigger a panic event and effectively delete everything from the Briar
app.

Scenario 1: App is unlocked. The Panic app prompts a bypass

To demonstrate how the issue occurs, a custom exploit APK was created. A demo was
also recorded to highlight how the malicious app is set as the Panic app, then displaying
how all of the Panic button setup settings are altered, including the consequences of the
“Delete Account” action (which deletes all data), as well as “Uninstall Briar”. While this is
the main example, it has to be underscored that all other screens (i.e. chats, general
settings, Tor configuration, etc.) are also affected by this problem.

https://cure53.de/exchange/792346243678/Tapjacking_PoC2.zip

Scenario 2: App is locked. The Delete button prompts a bypass

7 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE

Cure53, Berlin · 03/20/17 4/15

https://cure53.de/
https://cure53.de/exchange/792346243678/Tapjacking_PoC2.zip
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

In the event of the Briar app being locked, a malicious application can still delete all
user-information via two alternative buttons, namely “I have forgotten my password” and
“Delete”. These are also vulnerable to tapjacking:

Fig.: User-data being wiped when the app is locked via tapjacking

It is recommended to implement the filterTouchesWhenObscured89 attribute at the
Android WebView level10. This will ensure that all taps from any potentially malicious
apps rendered on top are ignored, thus eradicating this attack vector. Ideally, this should
be implemented in a base view, meaning that other views are to inherit the protection.
The proposed approach will reduce the risk of human error linked to leaving certain
buttons unprotected.

BRP-01-005 Mobile: Arbitrary sign out via PanicResponderActivity (Low)
The Briar application exposes an activity responsible for handling panic situations.
Although this functionality is intended to exclusively process actions from trusted
applications, it was found that the sign out fragment of the processing code is executed
regardless of the invoking app. As a result, a malicious app could leverage this
weakness to continuously sign out the Briar user, sending and crafting intents in the
background. Therefore, a legitimate app use would be prevented, while the user would
additionally have no way of telling what has happened. The latter is due to the fact that
the application’s UI would only testify to a loading process of an unspecified type. Please
note that this is the same intent that a malicious application could send to delete all
application data as a result of exploiting BRP-01-004.

8 http://developer.android.com/reference/androi....html#setFilterTouchesWhenObscured(boolean)
9 http://developer.android.com/reference/android/...View.html#attr_android:filterTouchesWhenObscured
10 https://cordova.apache.org/docs/en/latest/guide/platforms/android/webview.html

Cure53, Berlin · 03/20/17 5/15

https://cure53.de/
https://cordova.apache.org/docs/en/latest/guide/platforms/android/webview.html
http://developer.android.com/reference/android/view/View.html#attr_android:filterTouchesWhenObscured
http://developer.android.com/reference/android/view/View.html#setFilterTouchesWhenObscured(boolean)
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

This issue was confirmed with the use of the following ADB Command. It sends an intent
to trigger the panic response, which the app simply processes.

ADB Command:
adb shell am start -a "info.guardianproject.panic.action.TRIGGER" -n
"org.briarproject.briar/org.briarproject.briar.android.panic.PanicResponderActiv
ity"

Resulting Logcat trace:
03-03 18:54:27.477 I/ActivityManager(966): START u0
{act=info.guardianproject.panic.action.TRIGGER flg=0x10000000
cmp=org.briarproject.briar/.android.panic.PanicResponderActivity} from uid 0 on
display 0
03-03 18:54:27.536 I/PanicResponderActivity(3231): Signing out...

This issue would be likely to cause confusion among the affected users because the
app’s UI does not show that the user has been signed out. What seemingly transpires
instead is the never-ending loading of all chats, forums, and similar components. The
user can work around this problem by manually signing out and logging in again, but the
malicious app only needs to send another intent to have the process repeated and occur
once again.

Fig.: All UI screens seem to be loading but the user is signed out.

It is recommended to stop all processing when the intent arrives from an untrusted
application.

Cure53, Berlin · 03/20/17 6/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

BRP-01-006 Mobile: DNS leak via RSS Import (High)
An end-user expects all traffic issued by the application to be tunneled through Tor. It
was discovered that the DNS lookup11, linked to the domain specified in the RSS import,
gets leaked on the local network. The reason behind this issue is not having it sent
through Tor. An attacker who can sniff the victim's traffic can not only obtain the victim's
real IP address, but may also replace the DNS response and point it to its own server.

Steps to Reproduce:
1. The attacker starts to sniff the victim's traffic, for example via a MitM (Man-in-the-

Middle) attack;
2. The victim imports an RSS feed, for example http://whatever.com/rss.xml

The following traffic can be seen on the wire:

12:29:08.806309 IP 192.168.0.157.42166 > google-public-dns-a.google.com.domain:
55164+ A? whatever.com.

This issue can be verified by changing the Android DNS settings. Specifically, a DNS
server on the local network can be employed. The traffic needs to be observed, for
example with the use of dnschef12:

Command:
dnschef -i 192.168.7.231 --nameservers=192.168.7.1

Output:
[07:34:26] 192.168.7.193: proxying the response of type 'A' for whatever.com
[07:34:26] 192.168.7.193: proxying the response of type 'A' for whatever.com

It is recommended to use SOCKS 4a protocol for connecting to the Tor socket. This
approach ensures that DNS lookups are protected via the Tor protocol too13. As Android
lacks proper support for the SOCKS 4a protocol, it would be necessary to import another
third-party library to rely on. As this could introduce new security issues, it is a priority for
the necessity of reliable anonymity to be analyzed. Alternatively, it could be decided that
the risk is acceptable, though the users must be informed about the matter at hand in
that case.

11 https://blog.udemy.com/dns-lookup-command/
12 http://thesprawl.org/projects/dnschef/
13 https://www.reddit.com/r/DarkNetMarkets/comme...opseccomputer_android_orbottorweb_socks/

Cure53, Berlin · 03/20/17 7/15

https://cure53.de/
https://www.reddit.com/r/DarkNetMarkets/comments/2ziorr/opseccomputer_android_orbottorweb_socks/
http://thesprawl.org/projects/dnschef/
http://whatever.com/rss.xml
https://blog.udemy.com/dns-lookup-command/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

BRP-01-008 Mobile: User disruption via exposed activities (Medium)
It was found that the Briar application exposes and processes intents sent to multiple
activities. Although some of these do not process extras, they can still be valuable for a
malicious application seeking to disrupt Briar users. More specifically, a malicious app
running in the background could continuously send crafted intents to annoy Briar users
until they decide to uninstall the app.

This issue can be confirmed when the following ADB Commands are run either on an
emulator or on a real phone connected to a host system.

ADB Commands:
adb shell am start -a "android.intent.action.MANAGE_NETWORK_USAGE" -n
"org.briarproject.briar/org.briarproject.briar.android.settings.SettingsActivity
"
adb shell am start -a "info.guardianproject.panic.action.CONNECT" -n
"org.briarproject.briar/org.briarproject.briar.android.panic.PanicPreferencesAct
ivity"
adb shell am start -a "android.intent.action.MAIN" -n
"org.briarproject.briar/org.briarproject.briar.android.splash.SplashScreenActivi
ty"

The above sequence displays the Briar settings, then revealing also the panic settings.
Ultimately, it shows the Splash screen logging the user out. Sending this sequence of
intents in a constant manner will cease an option of a normal usage of the Briar
application. Consequently, it would entice users to uninstall the Briar product.

It is recommended to reduce the number of exported activities so that less attack surface
is exposed to untrusted applications. The remaining activities could then be protected
with a permission or, where possible, the sender of the intent could be subjected to
verification14.

BRP-01-009 Mobile: Possible Intent hijacking via PendingIntent (Medium)
It was found that the Briar Android app uses a local intent to create an instance of
PendingIntent without passing an explicit Intent Class. This allows malicious apps to
redirect or modify the intent in question while keeping up with the Briar app permissions.
The issue can be found on the location provided next, wherein one can observe that the
clear intent is never passed explicitly for creating a new instance of PendingIntent:

File:
src/main/java/org/briarproject/briar/android/AndroidNotificationManagerImpl.java

14https://dev.guardianproject.info/projects/trustedintents/wiki

Cure53, Berlin · 03/20/17 8/15

https://cure53.de/
https://dev.guardianproject.info/projects/trustedintents/wiki
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
344 // Clear the counters if the notification is dismissed
345 Intent clear = new Intent(CLEAR_PRIVATE_MESSAGE_ACTION);
346 PendingIntent delete = PendingIntent.getBroadcast(appContext, 0,
347 clear, 0);
[...]
452 // Clear the counters if the notification is dismissed
453 Intent clear = new Intent(CLEAR_GROUP_ACTION);
454 PendingIntent delete = PendingIntent.getBroadcast(appContext, 0,
455 clear, 0);
[...]
548 // Clear the counters if the notification is dismissed
549 Intent clear = new Intent(CLEAR_FORUM_ACTION);
550 PendingIntent delete = PendingIntent.getBroadcast(appContext, 0,
551 clear, 0);
[...]
644 // Clear the counters if the notification is dismissed
645 Intent clear = new Intent(CLEAR_BLOG_ACTION);
646 PendingIntent delete = PendingIntent.getBroadcast(appContext, 0,
647 clear, 0);

The official Android documentation includes clear statement concerning the
getBroadcast method of PendingIntent15:

“For security reasons, the Intent you supply here should almost always be an
explicit intent, that is specify an explicit component to be delivered to through
Intent.setClass”

It is recommended to provide the target intent class explicitly to solve this problem. For
additional background and guidance on this type of issues, please see the relevant
secure coding rule.16

15 https://developer.android.com/reference/andro...roid.content.Context, int, android.content.Intent, int)
16 https://www.securecoding.cert.org/confluence/...s+pass+explicit+intents+to+a+PendingIntent

Cure53, Berlin · 03/20/17 9/15

https://cure53.de/
https://www.securecoding.cert.org/confluence/display/android/DRD21-J.+Always+pass+explicit+intents+to+a+PendingIntent
https://developer.android.com/reference/android/app/PendingIntent.html#getBroadcast(android.content.Context,%20int,%20android.content.Intent,%20int)
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

BRP-01-002 Mobile: Possible logcat leakage via SDK version (Info)
It was found that the Briar Android app may inadvertently leak data to other apps via
logcat messages. This is due to the fact that the application supports Android SDK
version 14. Please note that applications without root privileges can read all logcat
messages up to the Android 4.1 (API 16) version.

File:
AndroidManifest.xml

Affected Code:
<uses-sdk android:minSdkVersion="14" android:targetSdkVersion="22"/>

Example Tor startup information in logcat:
03-03 16:32:47.072 I/PluginManagerImpl(3231): Starting plugin
org.briarproject.bramble.lan took 5 ms
03-03 16:32:47.585 I/TorPlugin(3231): Mar 03 15:32:47.584 [notice] Tor v0.2.7.6
running on Linux with Libevent 2.0.22-stable, OpenSSL 1.0.2e and Zlib 1.2.8.
03-03 16:32:47.586 I/TorPlugin(3231): Mar 03 15:32:47.586 [notice] Tor can't
help you if you use it wrong! Learn how to be safe at
https://www.torproject.org/download/download#warning
03-03 16:32:47.589 I/TorPlugin(3231): Mar 03 15:32:47.588 [notice] Read
configuration file "/data/user/0/org.briarproject.briar/app_tor/torrc".
03-03 16:32:47.600 I/TorPlugin(3231): Mar 03 15:32:47.600 [notice] Opening
Control listener on 127.0.0.1:59051
[...]
03-03 21:02:02.858 I/TorPlugin(6878): WARN Received http status code 404 ("Not
found") from server '164.132.97.234:9001' while fetching
"/tor/keys/fp/585769C78764D58426B8B52B6651A5A71137189A+80550987E1D626E3EBA5E5E75
A458DE0626D088C".

It is recommended to consider increasing the minimum SDK version to the API 16 at the
very minimum.

Cure53, Berlin · 03/20/17 10/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

BRP-01-003 Mobile: Possible Information Leakage via Debuggable Flag (Info)
It was found that the APK supplied for testing has the debuggable flag17 enabled. This
could result in data leakage and should not be set in production builds.

<application android:allowBackup="false" android:debuggable="true"
android:icon="@drawable/ic_launcher" android:label="@string/app_name"
android:logo="@mipmap/ic_launcher_round"
android:name="org.briarproject.briar.android.BriarApplicationImpl"
android:supportsRtl="true" android:theme="@style/BriarTheme">

It is recommended to have the deployment strategy ensure that the debuggable flag is
set to false.

BRP-01-007 Mobile: App Crash via unsupported Intent (Info)
It was found that links in manually created blog posts can specify any protocol. This can
be used to specify the intent:// protocol handler18, which makes creation of intents
possible. As soon as a victim clicks on a malicious intent:// link, which points to the Briar
app, the app will crash.

Steps to Reproduce:
1. The attacker creates a blog post with the following payload:

<a
href="intent://test#package=org.briarproject.briar;action=info.guardianpr
oject.panic.action.CONNECT;component=org.briarproject.briar.android.panic
.PanicPreferencesActivity">asdf

2. A contact of the attacker reads the blog post and clicks on the link.
3. Confirm the dialog.
4. The Briar app crashes.

ACRA caught a ActivityNotFoundException for org.briarproject.briar
android.content.ActivityNotFoundException: No Activity found to handle
Intent { act=android.intent.action.VIEW dat=Internet://test }
at
android.app.Instrumentation.checkStartActivityResult(Instrumentation.java
:1798)

File:
briar-android\src\main\java\org\briarproject\briar\android\blog\WriteBlogPostActivity.java

17 http://developer.android.com/guide/topics/manifest/application-element.html#debug
18 https://developer.android.com/guide/components/intents-filters.html

Cure53, Berlin · 03/20/17 11/15

https://cure53.de/
https://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/topics/manifest/application-element.html#debug
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Code:
public void onSendClick(String body) {
 // hide publish button, show progress bar
 [...]
 body = StringUtils.truncateUtf8(body, MAX_BLOG_POST_BODY_LENGTH);
 // <-- Apply HTML sanitization here
 storePost(body);
 }

private void storePost(final String body) {
 runOnDbThread(new Runnable() {
 @Override
 public void run() {
 long now = System.currentTimeMillis();
 try {
 LocalAuthor author = identityManager.getLocalAuthor();
 BlogPost p = blogPostFactory
 .createBlogPost(groupId, now, null, author, body);
 blogManager.addLocalPost(p);
 postPublished();

It is recommended to only allow certain protocols - like HTTP, HTTPS and FTP - in the
links to blog posts. The same whitelist is already applied to the imported RSS feeds and
should be equally employed for all manually created blog posts.

BRP-01-010 Crypto: DoS in StreamEncrypterImpl.java via paddingLength (Info)
During the crypto audit it was found that the writeFrame function in the
StreamEncrypterImpl.java file could cause a Denial of Service (DoS) in the Briar’s
cryptographic subsystem, provided that it passes a negative paddingLength value. The
explanation of this flaw is linked to a bounds check that is implemented for other input
values, yet it is not implemented for this particular value.

File:
bramble-core/src/main/java/org/briarproject/bramble/crypto/StreamEncrypterImpl.java

Affected Code:
public void writeFrame(byte[] payload, int payloadLength,

 int paddingLength, boolean finalFrame) throws IOException {...}

It is recommended to check the length of the value and agree on throwing an
IllegalArgumentException in case of an invalid value.

Cure53, Berlin · 03/20/17 12/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

BRP-01-011 Crypto: Password strength indicator seems useless (Info)
During the crypto audit, doubts arose with regard to the indicator informing about the
strength of a password. It is unclear whether the password strength mechanism defined
in the file PasswordStrengthEstimatorImpl.java is of real value. As an example, it can be
mentioned that the password “Password1” gets accepted as strong by the algorithm in
place.

File:
bramble-core/src/main/java/org/briarproject/bramble/crypto/
PasswordStrengthEstimatorImpl.java

Affected Code:
private static final int LOWER = 26;
private static final int UPPER = 26;
private static final int DIGIT = 10;
private static final int OTHER = 10;
private static final double STRONG = Math.log(Math.pow(LOWER + UPPER +

 DIGIT + OTHER, 10));

It should be considered to replace the currently used implementation with a different
approach. The proposed alternative should rely on the password length to a greater
degree, and, conversely, become less preoccupied with the combination of all-case
alphanumeric and special characters. Simply requiring a minimum length of twelve
characters for each password would likely constitute a better policy for having
passwords of a certain strength and quality enforced in the application.

BRP-01-012 Crypto: Unnecessary combination of two CSPRNGs (Info)
The design of the code in the CombinedSecureRandom.java file may not cause any
problems per se at the moment, but nevertheless seems ill-advised. It is unclear what
additional security guarantees are obtained from the process of XORing19 together
outputs from two different CSPRNGs20, as these are seeded from and operating on the
same device.

File:
bramble-core/src/main/java/org/briarproject/bramble/crypto/
CombinedSecureRandom.java

Affected Code:
class CombinedSecureRandom extends SecureRandom {...}

19 https://en.wikipedia.org/wiki/Exclusive_or
20 https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

Cure53, Berlin · 03/20/17 13/15

https://cure53.de/
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Exclusive_or
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

A single CSPRNG should suffice. The code excerpt this issue extends to seems to be
adding unnecessary complexity. In other words, it should probably be removed before
becoming a liability.

Conclusions
The results of this Cure53 penetration test and audit of the Briar secure messenger
application for Android points to an overall good handling of matters linked to security
and privacy in the tested product.

To nevertheless begin with the areas to improve and issues calling for urgent attention, a
reaction is needed with reference to the vulnerability marked as “High” in terms of
severity and impact. The problem - documented in BRP-01-006 - can clearly lead to the
anonymity promise being broken. This is because a user might assume to be protected
when performing certain activities via the Tor, yet data leakage remains a real concern in
this scenario. The bigger problem is that the issue must be seen as fairly hard to
address and fix properly. For that reason, it might be the case that, despite considerable
risk, the potential harmful effects are being accepted by the application’s maintainer. In
that case, it is still mandatory that the users are informed about the matter at hand.
Moving on, a noticeable pattern of insecurity, which could additionally impede user-
experience and discourage people from continuing on with the Briar application, can be
linked to intents. More specifically, many of the exposed intents failed to properly verify
the sender. As a result, an attacker with a rogue app gains an array of possibilities when
seeking to interfere with the Briar application. This includes a total wipe of the application
and its data by combining some intents with a tapjacking attack. The flaws in this realm
require consideration.

With reference to the positive factors, contributing to the final verdict, it has to be
underlined that a grand total standing at twelve security-relevant findings is more than
satisfactory and acceptable. Even more reassuring is the fact that all but one issue were
marked with medium and low rankings, or classified even as informational only. For the
six Cure53 testers who completed this assessment, the overall low severity translates to
an application with a good understanding of vulnerability patterns and threats. What is
more, the majority of issues classified as non-threatening could be seen as being quite
easy to fix and unlikely to affect the user-experience in a profound way. Commenting on
broader impressions, the testing team stated very that the quality and readability of the
app’s source code was rather exceptional, thus making this assessment pleasant and
efficient. The communication with the development team during the project was
professional and timely, and the questions and requests communicated by the Cure53
team during the test were usually responded to with precision.

Cure53, Berlin · 03/20/17 14/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Last but not least, it must be noted that the tested Briar application is at a very early
stage of development and present. Consequently, once the development is completed, a
second audit is highly advisable. Still, provided that the documented issues get fixed
properly, the application is able to offer a good level of privacy and security. In other
words, the Briar secure messenger can be recommended for use.

Cure53 would like to thank Michael Rogers of Briar Project for his excellent project
coordination, support and assistance, both before and during this assignment. We would
like to further express our gratitude to the Open Technology Fund in Washington D.C.,
USA, for generously funding this and other penetration test projects, as well as enabling
us to publish the results.

Cure53, Berlin · 03/20/17 15/15

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Briar Project App & Protocol 03.2017
	Index
	Introduction
	Scope
	Cryptography Review
	Identified Vulnerabilities
	BRP-01-001 Mobile: Lack of screenshot protections (Medium)
	BRP-01-004 Mobile: Panic app prompt bypass via Tapjacking (Medium)
	BRP-01-005 Mobile: Arbitrary sign out via PanicResponderActivity (Low)
	BRP-01-006 Mobile: DNS leak via RSS Import (High)
	BRP-01-008 Mobile: User disruption via exposed activities (Medium)
	BRP-01-009 Mobile: Possible Intent hijacking via PendingIntent (Medium)

	Miscellaneous Issues
	BRP-01-002 Mobile: Possible logcat leakage via SDK version (Info)
	BRP-01-003 Mobile: Possible Information Leakage via Debuggable Flag (Info)
	BRP-01-007 Mobile: App Crash via unsupported Intent (Info)
	BRP-01-010 Crypto: DoS in StreamEncrypterImpl.java via paddingLength (Info)
	BRP-01-011 Crypto: Password strength indicator seems useless (Info)
	BRP-01-012 Crypto: Unnecessary combination of two CSPRNGs (Info)

	Conclusions

